

1. Introdu Challenges and	ction risks of SB ADS-B	
The depend interference, addition, ADS	ence on GNSS makes SB A such as jamming or spoofing, affo B itself is vulnerable to spoofing a	DS-B vulnerable to ecting data quality. In nd jamming too.
An independ robustness.	lent secondary system is ne	cessary to improve
 The combined surveillance, or alone. 	l use of ADS-B and MLAT systems offers an alternative to using AD	, known as composite S-B and SSR Mode S
SESAR Innovation Days 2024		
		-Funded by European Union

3. Results sesa IOINT UNDERTAKIN Comparison of the CRLB, the Taylor series method, its Tikhonov-regularized version, and the IMM+UKF filter with a $\sigma_{TOA} = 10^{-8} s$, $\sigma_{SAT} = 10$ m and a take-off time of 12:00h. | R.M.S Error | 100 Monte Carlo trials | Bias | 100 Monte Carlo trials 50 ← Taylor, mean: 1.68978 ← Taylor + Tikhonov, mean: 1.59654 ← IMM + UKF, mean: 1.35579 CRLB Taylor 45 -Taylor + Tikhono -IMM + UKF 5 40 R.M.S Error 2D (m) 5 25 00 07 25 00 4 (E Bias 2D (I 15 10 5 0 0 60 20 40 60 80 100 0 20 40 80 100 Waypoints Waypoints **SESAR Innovation Days 2024** ADR

23

3. Results sesa IOINT UNDERTAKIN Comparison of the CRLB, the Taylor series method, its Tikhonov-regularized version, and the IMM+UKF filter with a $\sigma_{TOA} = 10^{-8} s$, $\sigma_{SAT} = 240 \text{ m}$ and a take-off time of 12:00h. | Bias | 100 Monte Carlo trials | R.M.S Error | 100 Monte Carlo trials 800 140 ← Taylor, mean: 21.5595 ← Taylor + Tikhonov, mean: 20.8001 ← IMM + UKF, mean: 11.6064 CRLB -Taylor -Taylor + Tikhono -IMM + UKF 700 120 600 100 Bias 2D (m) 80 60 40 200 20 100 0 ¹ 0 0 [.] 0 20 40 60 80 100 40 60 100 Waypoints Waypoints **SESAR Innovation Days 2024** ADR 25

